Те, кто хотя бы раз вечером внимательно наблюдал за звездами, не мог не заметить яркую точку, которая своим блеском и размерами выделяется на фоне остальных. Это не далекая звезда, свет которой идет к нам миллионы лет. Это сияет Юпитер — самая большая планета Солнечной системы. Во времена максимального сближения с Землей это небесное светило становится наиболее заметным, уступая по яркости нашим другими космическим спутницам — Венере и Луне .

Крупнейшая из планет нашей Солнечной системы стала известна людям еще много тысяч лет назад. Уже одно название планеты говорит о ее значимости для человеческой цивилизации: из уважения к размерам небесного светила древние римляне дали ему имя в честь главного античного божества — Юпитера.

Планета-гигант, ее главные особенности

Изучая Солнечную систему в пределах зоны видимости, человек сразу отметил присутствие в ночном небе огромного космического объекта. Первоначально считалось, что один из самых ярких объектов на ночном небе — это блуждающая звезда, однако со временем стала ясна иная природа этого небесного светила. Высокая яркость Юпитера объясняется его колоссальными размерами и достигает максимальных значений во время сближения планеты с Землей. Свет планеты – гиганта составляет -2,94 m видимой звездной величины, проигрывая по яркости только блеску Луны и Венеры.

Первое описание Юпитера, крупнейшей планеты Солнечной системы датируется VIII-VII веком до н. э. Еще древние вавилоняне наблюдали яркую звезду в небе, олицетворяя ее с верховным богом Мардук, покровителем Вавилона. В более поздние времена, древние греки, а затем и римляне считали Юпитер вместе с Венерой одним из главных светил небесной сферы. Германские племена наделили гигантскую планету мистической божественной силой, дав ей имя в честь своего главного бога Донара. Более того, практически все астрологи, звездочеты и предсказатели древности всегда в своих предсказаниях и отчетах учитывали положение Юпитера, яркость его света. В более поздние времена, когда уровень технического оснащения позволил точнее вести наблюдения за космосом, оказалось что Юпитер явно выделяется в сравнении с другими планетами Солнечной системы.

Реальный размер небольшой яркой точки на нашем ночном имеет колоссальные значения. Радиус Юпитера в экваториальной зоне составляет 71490 км. В сравнении с Землей, диаметр газового гиганта составляет чуть меньше 140 тыс. км. Это в 11 раз больше диаметра нашей планеты. Таким грандиозным размера соответствует и масса. Гигант имеет массу 1,8986х1027кг и весит в 2,47 раз больше, чем общая масса оставшихся семи планет, комет и астероидов, принадлежащих Солнечной системе.

Масса Земли составляет 5,97219х1024 кг, что в 315 раз меньше массы Юпитера.

Однако «царь планет», не по всем параметрам является самой крупной планетой. Несмотря на свои размеры и огромную массу, Юпитер по плотности уступает в 4,16 раз нашей планете, 1326 кг/м3 и 5515 кг/м3 соответственно. Это объясняется тем, что наша планета представляет собой каменный шар с тяжелым внутренним ядром. Юпитер является плотным скоплением газов, плотность которых соответственно меньше плотности любого твердого тела.

Интересен и другой факт. При достаточно невысокой плотности сила тяжести на поверхности газового гиганта в 2,4 раза превышает земные параметры. Ускорение свободного падения на Юпитере будет составлять 24,79 м/с2 (аналогичная величина на Земле составляет 9,8 м/с2). Все представленные астрофизические параметры планеты определяются ее составом и структурой. В отличие от первых четырех планет, Меркурия, Венеры, Земли и Марса, относящихся к объектам земной группы, Юпитер возглавляет когорту газовых гигантов. Как и Сатурн, Уран и Нептун, самая крупная из известных нам планет не имеет земной тверди.

Существующая на сегодняшний день трехслойная модель планеты дает представление о том, чем является Юпитер на самом деле. За внешней газообразной оболочкой, составляющей атмосферу газового гиганта, идет слой водяного льда. На этом прозрачная и видимая для оптических приборов прозрачная часть планеты заканчивается. Определить какого цвета поверхность планеты технически невозможно. Даже при помощи космического телескопа Хаббл ученым удалось рассмотреть только верхний слой атмосферы огромного газового шара.

Далее, если двигаться к поверхности наступает мрачный и горячий мир, который состоит из кристаллов аммиака и плотного металлического водорода. Здесь господствуют высокие температуры (6000-21000 К) и огромное давление, превышающее отметку в 4000Гпа. Единственным твердым элементом структуры планеты является каменное ядро. Наличие каменного ядра, которое в сравнении с размерами планеты имеет небольшой диаметр, наделяет планету гидродинамическим равновесием. Именно благодаря ему на Юпитере действуют законы сохранения масс и энергии, удерживая гиганта на орбите и заставляя вращаться вокруг собственной оси. У этого гиганта нет четко прослеживаемой границы между атмосферой и центральной, остальной частью планеты. В ученой среде принято считать условную поверхность планеты, где давление составляет 1 бар.

Давление в верхних слоях атмосферы Юпитера невысокое и составляет всего 1 атм. Зато здесь царит царство холода, так как температура не опускается ниже отметки – 130°С.

Атмосфера Юпитера содержит огромное количество водорода, который немного разбавлен гелием и примесями аммиака и метана. Этим объясняется красочность облаков, плотно покрывающих планету. Ученые полагают, что такое скопление водорода произошло в процессе формирования Солнечной системы. Более твердое космическое вещество под влиянием центробежных сил пошло на образование планет земной группы, тогда как более легкие свободные молекулы газов под воздействием тех же физических законов стали скапливаться в сгустки. Эти частицы газа и стали строительным материалом, из которого состоят все четыре планеты – гиганты.

Наличие на планете в таком количестве водорода, который является основообразующим элементом воды, наталкивает на мысль о существовании в огромных количествах водных ресурсов на Юпитере. На практике оказывается, что резкие перепады температур и физические условия на планете не позволяют молекулам воды перейти из газообразного и твердого состояния в жидкость.

Астрофизические параметры Юпитера

Пятая по счету планета интересна и своими астрофизическими параметрами. Находясь за поясом астероидов, Юпитер условно делит Солнечную систему на две части, оказывая сильнейшее влияние на все космические объекты, находящиеся в сфере его влияния. Ближайшей планетой к Юпитеру является Марс, который постоянно находится в сфере влияния магнитного поля и силы притяжения огромной планеты. Орбита Юпитера имеет форму правильного эллипса и незначительный эксцентриситет, всего 0,0488. В связи с этим Юпитер практически все время пребывает от нашей звезды на одном и том же расстоянии. В перигелии планета находится центра Солнечной системы на расстоянии 740,5 млн. км., а в афелии Юпитер находится на расстоянии от Солнца 816,5 млн. км.

Вокруг Солнца гигант двигается достаточно медленно. Его скорость составляет всего 13 км/с, тогда как у Земли этот параметр почти втрое больше (29,78 км/с). Весь путь вокруг нашего центрального светила Юпитер совершает за 12 лет. На скорость движения планеты вокруг собственной оси и на скорость движения планеты по орбите сильное влияние оказывает сосед Юпитера — громадный Сатурн.

Удивительно с точки зрения астрофизики и положение оси планеты. Экваториальная плоскость Юпитера отклонена от орбитальной оси всего на 3,13°. На нашей Земле осевое отклонение от плоскости орбиты составляет 23,45°. Планета словно лежит на боку. Несмотря на это, вращение Юпитера вокруг собственной оси происходит с огромной скоростью, что приводит к естественному сжатию планеты. По этому показателю газовый гигант быстрее всех в нашей звездной системе. Вокруг собственной оси Юпитер вращается чуть менее 10 часов. Если быть точнее, космические сутки на поверхности газового гиганта составляют 9 часов 55 минут, тогда как юпитерианский год длится 10475 земных дня. Ввиду таких особенностей расположения оси вращения, на Юпитере отсутствуют смены времен года.

В точке максимального сближения Юпитер находится на расстоянии от нашей планеты в 740 млн. км. Этот путь современные космические зонды, летящие в космическом пространстве со скоростью 40000 километров в час, преодолевают по-разному. Первый космический аппарат в сторону Юпитера «Пионер 10» был запущен в марте 1972 года. Последним из аппаратов, запущенных в сторону Юпитера, стал автоматический зонд «Юнона». Космический зонд был запущен 5 августа 2011 года и только через пять лет летом 2018 года достиг орбиты «царь-планеты». За время полета аппаратом «Юнона» был проделан путь длиной 2,8 млрд. км.

Спутники планеты Юпитер: почему их так много?

Не трудно догадаться, что столь впечатляющие размеры планеты обуславливают наличие у нее большой свиты. По количеству естественных спутников Юпитеру нет равных. Их насчитывается 69 штук. В этом наборе присутствуют и настоящие гиганты, сравнимые по размерам с полноценной планетой и совсем маленькие, едва заметные с помощью телескопов. Есть у Юпитера и свои кольца, схожие с системой колец Сатурна. Кольцами у Юпитера стали мельчайшие элементы частиц, захваченные магнитным полем планеты непосредственно из космоса в период формирования планеты.

Такое большое количество спутников объясняется тем, что Юпитер имеет самое сильное магнитное поле, оказывающее огромное влияние на все соседние объекты. Сила притяжения газового гиганта настолько велика, что позволяет Юпитеру удерживать вокруг себя столь обширное семейство спутников. К тому же действия магнитного поля планеты вполне хватает для притягивания к себе всех странствующих космических объектов. Юпитер выполняет в Солнечной системе функцию космического щита, отлавливая из открытого космоса кометы и крупные астероиды. Относительно спокойное существование внутренних планет объясняется именно этим фактором. Магнитосфера огромной планеты мощнее, чем магнитное поле Земли в несколько раз.

Впервые со спутниками газового гиганта в 1610 году познакомился Галилео Галилей. В свой телескоп ученый увидел сразу четыре спутника, совершающие движение вокруг огромной планеты. Этим фактом и была подтверждена идея о гелиоцентрической модели Солнечной системы.

Поражают размеры этих спутников, которые могут конкурировать даже с некоторыми планетами Солнечной системы. К примеру, спутник Ганимед больше в размерах Меркурия — самой маленькой планеты Солнечной системы. Немногим Меркурию уступает и другой спутник-гигант — Каллисто. Отличительной чертой спутниковой системы Юпитера является то, что все вращающиеся вокруг газового гиганта планеты имеют твердую структуру.

Размеры самых известных спутников Юпитера следующие:

  • Ганимед имеет диаметр 5260 км (диаметр Меркурия составляет 4879 км);
  • Каллисто имеет диаметр 4820 км;
  • диаметр Ио равен 3642 км;
  • диаметр Европы составляет 3122 км.

Одни спутники находятся ближе к материнской планете, другие — дальше. История появления столь крупных естественных спутников пока не раскрыта. Вероятно, мы имеем дело с малыми планетами, которые некогда вращались с Юпитером по соседству. Мелкие спутники являются фрагментами разрушенных комет, прилетающих в Солнечную систему из облака Оорта. Примером может служить падение на Юпитер кометы Шумейкера-Леви, наблюдаемое в 1994 году.

Именно спутники Юпитера представляют собой интересующие ученых объекты, так как являются более доступными и схожими по своему строению с планетами земной группы. Сам газовый гигант представляет враждебную для человечества среду, где невообразимо предположить существование каких-либо известных форм жизни.

Если у вас возникли вопросы - оставляйте их в комментариях под статьей. Мы или наши посетители с радостью ответим на них

class="part1">

Подробно:

Планета Юпитер

Общие сведения о Юпитере

© Владимир Каланов,
сайт
"Знания-сила".

Гигант Солнечной системы

Юпитер фото АМС Вояджер-2

Сравнение Юпитера с Землёй

Юпитер является пятой по расстоянию от Солнца планетой Солнечной системы. Он удалён от Солнца в среднем на 778,3 млн. км (минимально – на 740,9, максимально – на 815,7 млн. км ).

Когда говорят о Юпитере, то среди прилагательных, пожалуй, чаще других мы слышим слова «огромный», «громадный», «гигантский». И это не случайно. Хотя всё в мире относительно, расстояния в сотни миллионов и миллиарды километров человеку кажутся действительно огромными. Ведь на Земле самое большое расстояние – это длина линии экватора. Если кто-то захотел бы проехать строго вдоль этой линии, никуда не отклоняясь, то, вернувшись в исходный пункт путешествия, он проделал бы путь, почти точно равный 40 тысячам километров. Правда, такой путь возможен только теоретически, т.к. на этом пути встретились бы океаны, моря́, озёра, горы, непроходимые джунгли и другие препятствия. Мы не говорим уже о том, что на поверхности Земли никакой такой линии экватора не видно. А теперь сравним две величины: 40 тыс. км и 449 тыс. км. вторая величина – это длина экватора планеты Юпитер. Путь вдоль экватора этой планеты вообще немыслим, т.к. передвигаться пришлось бы не по твёрдому грунту и не по воде, а по газу.

Газообразная планета

Планета Юпитер представляет собой газообразное небесное тело со сложной внутренней структурой. На планеты земной группы (Меркурий, Венера, Марс) Юпитер почти совсем не похож. По размерам и массе Юпитер является самой крупной планетой Солнечной системы. Объём Юпитера в 1310 раз больше объёма Земли, а масса – в 318 раз больше земной. И это при том, что средняя плотность вещества Юпитера (1,3 г/см³ ) в четыре с лишним раза меньше плотности Земли! Исследователи считают, что если бы масса Юпитера была в несколько десятков раз больше, то он мог бы стать звездой. В этом случае сила сжатия внутри планеты оказалась бы достаточной, чтобы недра её разогре́лись до такой температуры, при которой начинаются ядерные реакции.

Но Юпитеру выпала «судьба» остаться навсегда планетой и светить не своим собственным светом, а отражать свет Солнца. Юпитер ярко сияет в ночном небе, не заметить его даже невооруженным глазом просто невозможно. Ярче Юпитера среди планет только Венера, но ею мы можем любоваться только вблизи горизонта во время восхода или захода Солнца. В ночном небе Венера отсутствует.

Сила тяготения на поверхности Юпитера в 2,3 раза больше, чем на Земле (ускорение свободного падения на экваторе (g) 24,79 м/с² ). Огромная планета делает оборот вокруг своей оси всего за 10 часов. Это самый короткий период вращения, который имеют планеты Солнечной системы. Поскольку поверхность Юпитера газообра́зна, разные области его поверхности имеют разные скорости вращения: в экваториальном поясе период вращения составляет 9 часов 50 мин., а в средних и высоких широтах – 9 часов 56 мин.

Вследствие большой скорости вращения и небольшой средней плотности вещества Юпитер имеет заметное сжатие по линии полюсо́в: диаметр планеты у полюсо́в равен 134700 км, а по экватору – 143000 км, т.е. сжатие по полюса́м составляет 8300 км.

Экватор Юпитера наклонен всего на 3° к его орбите, поэтому на планете не бывает смены времен года. Юпитерианский год длится почти 12 земных лет. Юпитер несётся по орбите вокруг Солнца со скоростью 13,07 км/с . Но если мы сравним эту скорость с орбитальной скоростью планет, расположенных ближе к Солнцу, то Юпитер покажется нам просто небесным тихохо́дом. Судите сами: орбитальная скорость Марса – 24,12 км/с , Земли – 29,79, Венеры – 35,03, а Меркурия – 47,87 км/с .

Поверхность Юпитера

При наблюдении в телескоп исследователь видит густые облака́, но эти облака́ не похожи на земные, они не являются водяным паром, а представляют собой слой газа, из которого состоит планета. В телескопе Юпитер виден желтоватым. На поверхности планеты видны широкие полосы газа, движущиеся параллельно экватору. По краям этих полос заметны признаки вихревого движения газа. Характерной особенностью поверхности Юпитера является наличие светлых округлых пятен среди облаков. Эти пятна были открыты ещё в первой половине XVII века. Как установлено, они являются гигантскими вихрями, господствующими на поверхности Юпитера. Такие атмосферные вихри существуют на этой планете от нескольких недель до нескольких месяцев, а некоторые могут бушевать десятки лет. Они возникают, исчезают или сливаются с другими вихрями. Например, два вихря, известные под названием Белые Овалы , поперечником в 10 тысяч километров каждый, за которыми велось наблюдение в течение более 60 лет, в 1998 году слились в один гигантский вихрь.

Наибольший интерес среди поверхностных объектов на Юпитере представляет так называемое , обнаруженное в 1664 году французским астрономом Джан Доменико Кассини. Большое Красное Пятно находится в южной части планеты и за три с половиной века почти не переместилось и мало изменило свои размеры и форму. А размеры этого «родимого пятна́» Юпитера колоссальны: 12000 км по широте и 48000 км по долготе. Розоватый цвет этого Пятна периодически меняется, то усиливая яркость, то становясь более блеклым.

Существующее предположение о том, что Большое Красное Пятно является огромным облаком или местом, где бушует суперви́хрь или мощный циклон, может вызвать у кого-то сомнения. В самом деле, очень трудно понять, как облако или область вихрей может сохранять свои размеры и форму, а также место своего расположения на протяжении многих столетий. Впрочем, наши понятия и представления определяются земными условиями, а на Юпитере условия совершенно другие. По последним данным, Большое Красное Пятно – это огромный вихрь, который вращается вокруг своей оси с периодом в 6 земных суток.

А вот какую гипотезу высказал в 1950 году американский учёный Э. Великовский. Он считает, что Большое Красное Пятно осталось на поверхности Юпитера после столкновения планеты в далёком прошлом с каким-то крупным небесным телом, в результате чего от Юпитера отделилась некоторая часть его вещества. Эта часть вещества не исчезла в глубинах космоса, а заняла место между орбитами Меркурия и Земли и превратилась в нашу космическую соседку Венеру. Правда, перед тем как выбрать себе место потеплее, будущая Венера изрядно поблужда́ла по просторам Солнечной системы.

Подтверждение своей гипотезе Э. Великовский нашёл, по его мнению, самое надёжное. В основу доказательства правильности гипотезы он всерьёз положил древнегреческий миф об Афине-Палладе, которая, как известно, родилась из головы Зевса. Наверняка эта красивая гипотеза не могла бы возникнуть, если бы её автор знал, что у Юпитера твёрдое вещество находится только в его ядре, на глубине не менее 60 тысяч км от поверхности. Оторвать же от планеты какой-то объём газа и унести его в космос представляется крайне проблематичным. Ну, а какое отношение к астрономической науке имеет бог-громовержец Зевс, мы и не спрашиваем, потому что знаем – никакого.

Пояса и зоны

На Юпитере видны и другие вихревые образования, например, Белое Пятно , поперечник которого составляет около 15000 км. это второе по размерам вихревое образование, которое из-за неподвижности или малой подвижности выглядит как пятно.

Пояса и зоны могут внезапно изменить своё положение, но обычно со временем они восстанавливаются. В мае 2010 года Большой южный экваториальный пояс почти пропал. Причина однозначно не ясна. По одной гипотезе время от времени происходит обволакивание и скрытие от обзора светлыми облаками тёмных, находящихся ниже, по другой - происходят химические изменения в газовых потоках.

Полосы облаков, расположенные параллельно экватору, выглядят светлее или темнее в зависимости от того, воздействию каких потоков атмосферы они подвержены в каждый данный момент – нисходящих холодных (температура около минус 154°C) или восходящих тёплых (температура около минус 147°C). Принято называть: белые полосы – зонами, а тёмные – пояса́ми .

Наблюдения показывают, что относительная скорость участков, находящихся в соседних зонах-по́лосах, иногда может доходить до 300 км/ч. В этих случаях легко заметить на краях полос закручивающиеся буруны, свидетельствующие о быстром турбулентном движении газа. В зависимости от газового состава облаков их цвет может меняться от синевато-белесого и белого до све́тло-коричневого и красноватого.

© Владимир Каланов,
"Знания-сила"

Уважаемые посетители!

У вас отключена работа JavaScript . Включите пожалуйста скрипты в браузере, и вам откроется полный функционал сайта!

Самая крупная планета в нашей Солнечной системе – это Юпитер. Наряду с Нептуном, Сатурном и Ураном эта планета классифицируется не иначе как газовый гигант. Юпитер был известен человечеству еще со времен древних цивилизаций, он нашел своё отражение в религиозных верованиях и мифологии. Название же его происходит от имени верховного бога-громовержца Древнего Рима.

Диаметр этого гиганта более чем в 10 раз превышает диаметр нашей планеты, а его объемы превосходят все планеты нашей Солнечной системы. В нем поместятся 1300 таких планет, как наша. Сила притяжения Юпитера такова, что может изменить траекторию движения комет, притом, чтов итоге это небесное тело может покинуть Солнечную систему вовсе. Магнитное поле планеты Юпитер также самое сильное среди всех планет системы.

Оно в 14 раз превышает наше. Многие астрономы склонны считать, что это поле создается благодаря движению водорода внутри гиганта. Юпитер – очень сильный радиоисточник, он может повредить любой из существующих космических аппаратов, подлетевших слишком близко.

Несмотря на свои огромные параметры, Юпитер – самая быстрая планета системы Солнца. Для полного её вращения достаточно десяти часов. Но для того, что бы облететь Солнце гигант затрачивает около 12 лет.


Это интересно: на планете нет смены времен года!
В принципе, гиганта можно рассматривать и как отдельную систему, такая своеобразная система Юпитера в системе Солнца. Всё дело в том, что вокруг него вращается более 60 спутников. Все они вращаются в противоположном направлении от вращения самой планеты. Вполне возможно, что истинное число спутников Юпитера переваливает за сотню, но, увы, пока они неизвестны для ученых. Среди всех небесных тел, вращающихся вокруг этого гиганта, можно выделить четыре: Каллисто, ИО, Европа и Ганимед. Все вышеперечисленные спутники больше нашей Луны минимум в 1,5 раза.


Юпитер имеет 4 кольца. Одно, самое главное, появилось благодаря столкновению метеорита с 4мя спутниками этой планеты: Метида, Альматея, Фива и Адрестея. Кольца Юпитера имеют одно отличие: в них не был найден лёд. Сравнительно недавно ученые обнаружили еще одно кольцо, которое расположилось само ближе к планете-гиганту, оно получило название Гало.


Удивительным фактом является то, что на планете Юпитер располагается Большое Красное пятно, котороя на самом деле является трехсот пятидесяти летним антициклоном. Возможно ему даже больше, чем мы предполагаем. Его открыл астроном Дж. Кассини в 1665 году. Он достигал своего максимума век назад: 14 тысяч км в ширину и 40 тысяч км в длину. На данный момент антициклон уменьшился вдвое. Красное пятно – это своеобразный вихрь, который вращается со скоростью 400-500 км/ч против часовой стрелки.
Земля и Юпитер чем-то похожи друг на друга. К примеру, бури на этой огромной планете долго не продолжаются, до 4 дней, а ураганы всегда сопровождаются штормом и молнией. Конечно, сила этих явлений намного больше, чем у нас.


Оказывается, Юпитер умеет «говорить». Он издает странные звуки, похожие на речь, их так же называются электромагнитные голоса. Это странное явление впервые зарегистрировал зонд NASA-Voyager.
Юпитер – довольно странная планета. Ученые не могут точно ответить, почему на ней природные явления ведут себя по-другому. К примеру, Юпитеру свойствен один интересный феномен – феномен «горячих теней». Всё дело в том, что обычно в тени температура ниже, чем на освещенных участках. Однако на этом гиганте там, где поверхность в тени, температура выше, чем в открытой окружающей местности. Существует много объяснений этой аномалии. Самой правдоподобной теорией является мнение, что все планеты поглощают большую часть энергии нашего светила, но небольшую часть – отражают. Выходит, что Юпитер наоборот отражает больше тепла, чем получает его от Солнца.

На этом странности не заканчиваются. Недавно на одном из спутников Юпитера – Ио – была зафиксирована вулканическая деятельность! На поверхности спутника было открыто восемь действующих вулканов. Это новость стала сенсацией, потому как нигде, кроме Земли, вулканов нет. На другом же спутнике – Европе – ученые обнаружили воду, которая находится под очень толстым слоем льда.


Юпитер может по праву считаться самой богатой планетой. По подсчетам ученых на этом гиганте может быть град из кусков алмаза. Дело в том, что на Юпитере углерод в кристаллических формах – далеко не редкость. Сначала молнии превращают метан в углерод, далее при падении он твердеет и превращается в графит. Падая еще ниже, графит в итоге становится алмазом, которому еще предстоит падать в течение 30 тысяч км. В самом конце, камни достигают такой большой глубины, что высокая температура ядра газового гиганта плавит их и, вполне возможно, что внутри создается огромный океан жидкого углерода.


Есть ли признаки жизни на Юпитере? Увы, на сегодняшний день наличие жизни на этой планете – маловероятно, потому как в атмосфере низкая концентрация воды и твёрдая поверхность в принципе отсутствует.
Перечитывая вышеизложенные факты, создается впечатление, что это далеко не все сенсации, самые интересные ждут нас впереди. Многие исследователи и ученые считают, что на Юпитере вполне возможна жизнь. Атмосфера этого гиганта очень похожа на нашу атмосферу в далеком прошлом. Поэтому, думается, это не последняя статья и это не последние факты, которые нам предстоит еще рассмотреть.

Юпитер - пятая планета от Солнца, крупнейшая в Солнечной системе. Наряду с Сатурном, Ураном и Нептуном Юпитер классифицируется как газовый гигант.

Планета была известна людям с глубокой древности, что нашло своё отражение в мифологии и религиозных верованиях различных культур: месопотамской, вавилонской, греческой и других. Современное название Юпитера происходит от имени древнеримского верховного бога-громовержца.

Ряд атмосферных явлений на Юпитере - такие, как штормы, молнии, полярные сияния, - имеют масштабы, на порядки превосходящие земные. Примечательным образованием в атмосфере является Большое красное пятно - гигантский шторм, известный с XVII века.

Юпитер имеет, по крайней мере, 67 спутников, самые крупные из которых - Ио, Европа, Ганимед и Каллисто - были открыты Галилео Галилеем в 1610 году.

Исследования Юпитера проводятся при помощи наземных и орбитальных телескопов; с 1970-х годов к планете было отправлено 8 межпланетных аппаратов НАСА: «Пионеры», «Вояджеры», «Галилео» и другие.

Во время великих противостояний (одно из которых происходило в сентябре 2010 года) Юпитер виден невооружённым глазом как один из самых ярких объектов на ночном небосклоне после Луны и Венеры. Диск и спутники Юпитера являются популярными объектами наблюдения для астрономов-любителей, сделавших ряд открытий (например, кометы Шумейкеров-Леви, которая столкнулась с Юпитером в 1994 году, или исчезновения Южного экваториального пояса Юпитера в 2010 году) .

Оптический диапазон

В инфракрасной области спектра лежат линии молекул H2 и He, а также линии множества других элементов. Количество первых двух несёт информацию о происхождении планеты, а количественный и качественный состав остальных - о её внутренней эволюции.

Однако молекулы водорода и гелия не имеют дипольного момента, а значит, абсорбционные линии этих элементов незаметны до того момента, пока поглощение за счёт ударной ионизации не станет доминировать. Это с одной стороны, с другой - эти линии образуются в самых верхних слоях атмосферы и не несут информацию о более глубоких слоях. Поэтому самые надёжные данные по обилию гелия и водорода на Юпитере получены со спускаемого аппарата «Галилео».

Что же касается остальных элементов, то при их анализе и интерпретации тоже возникают трудности. Пока что нельзя с полной уверенностью сказать, какие процессы происходят в атмосфере Юпитера и насколько сильно они влияют на химический состав - как во внутренних областях, так и во внешних слоях. Это создаёт определённые трудности при более детальной интерпретации спектра. Однако считается, что все процессы, способные тем или иным образом влиять на обилие элементов, локальны и сильно ограничены, так что они не способны глобально изменить распределения вещества.

Также Юпитер излучает (в основном в инфракрасной области спектра) на 60 % больше энергии, чем получает от Солнца. За счёт процессов, приводящих к выработке этой энергии, Юпитер уменьшается приблизительно на 2 см в год.

Гамма-диапазон

Излучение Юпитера в гамма-диапазоне связано с полярным сиянием, а также с излучением диска. Впервые зарегистрировано в 1979 году космической лабораторией имени Эйнштейна.

На Земле области полярных сияний в рентгене и ультрафиолете практически совпадают, однако, на Юпитере это не так. Область рентгеновских полярных сияний расположена гораздо ближе к полюсу, чем ультрафиолетовых. Ранние наблюдения выявили пульсацию излучения с периодом в 40 минут, однако, в более поздних наблюдениях эта зависимость проявляется гораздо хуже.

Ожидалось, что рентгеновский спектр авроральных сияний на Юпитере схож с рентгеновским спектром комет, однако, как показали наблюдения на Chandra, это не так. Спектр состоит из эмиссионных линий с пиками у кислородных линий вблизи 650 эВ, у OVIII линий при 653 эВ и 774 эВ, а также у OVII на 561 эВ и 666 эВ. Существуют также линии излучения при более низких энергиях в спектральной области от 250 до 350 эВ, возможно, они принадлежат сере или углероду.

Гамма-излучение, не связанное с полярным сиянием, впервые было обнаружено при наблюдениях на ROSAT в 1997 году. Спектр схож со спектром полярных сияний, однако в районе 0,7-0,8 кэВ. Особенности спектра хорошо описываются моделью корональной плазмы с температурой 0,4-0,5 кэВ с солнечной металличностью, с добавлением эмиссионных линий Mg10+ и Si12+. Существование последних, возможно, связано с солнечной активностью в октябре-ноябре 2003 года.

Наблюдения космической обсерватории XMM-Newton показали, что излучение диска в гамма-спектре - это отражённое солнечное рентгеновское излучение. В отличие от полярных сияний, никакой периодичности изменения интенсивности излучения на масштабах от 10 до 100 мин обнаружено не было.

Радионаблюдения

Юпитер - самый мощный (после Солнца) радиоисточник Солнечной системы в дециметровом - метровом диапазонах длин волн. Радиоизлучение имеет спорадический характер и в максимуме всплеска достигает 10-6.

Всплески происходят в диапазоне частот от 5 до 43 МГц (чаще всего около 18 МГц), в среднем их ширина составляет примерно 1 МГц. Длительность всплеска невелика: от 0,1-1 с (иногда до 15 с). Излучение сильно поляризовано, особенно по кругу, степень поляризации достигает 100 %. Наблюдается модуляция излучения близким спутником Юпитера Ио, вращающимся внутри магнитосферы: вероятность появления всплеска больше, когда Ио находится вблизи элонгации по отношению к Юпитеру. Монохроматический характер излучения говорит о выделенной частоте, скорее всего гирочастоте. Высокая яркостная температура (иногда достигает 1015 K) требует привлечения коллективных эффектов (типа мазеров).

Радиоизлучение Юпитера в миллиметровом - короткосантиметровом диапазонах имеет чисто тепловой характер, хотя яркостная температура несколько выше равновесной, что предполагает поток тепла из недр. Начиная с волн ~9 см Tb (яркостная температура) возрастает - появляется нетепловая составляющая, связанная с синхротронным излучением релятивистских частиц со средней энергией ~30 МэВ в магнитном поле Юпитера; на волне 70 см Tb достигает значения ~5·104 K. Источник излучения расположен по обе стороны планеты в виде двух протяжённых лопастей, что указывает на магнитосферное происхождение излучения.

Юпитер среди планет Солнечной системы

Масса Юпитера в 2,47 раза превосходит массу остальных планет Солнечной системы.

Юпитер - самая большая планета Солнечной системы, газовый гигант. Его экваториальный радиус равен 71,4 тыс. км, что в 11,2 раза превышает радиус Земли.

Юпитер - единственная планета, у которой центр масс с Солнцем находится вне Солнца и отстоит от него примерно на 7 % солнечного радиуса.

Масса Юпитера в 2,47 раза превышает суммарную массу всех остальных планет Солнечной системы, вместе взятых, в 317,8 раз - массу Земли и примерно в 1000 раз меньше массы Солнца. Плотность (1326 кг/м2) примерно равна плотности Солнца и в 4,16 раз уступает плотности Земли (5515 кг/м2). При этом сила тяжести на его поверхности, за которую обычно принимают верхний слой облаков, более чем в 2,4 раза превосходит земную: тело, которое имеет массу, например, 100 кг, будет весить столько же, сколько весит тело массой 240 кг на поверхности Земли. Это соответствует ускорению свободного падения 24,79 м/с2 на Юпитере против 9,80 м/с2 для Земли.

Юпитер как «неудавшаяся звезда»

Сравнительные размеры Юпитера и Земли.

Теоретические модели показывают, что если бы масса Юпитера была намного больше его реальной массы, то это привело бы к сжатию планеты. Небольшие изменения массы не повлекли бы за собой сколько-нибудь значительных изменений радиуса. Однако если бы масса Юпитера превышала его реальную массу в четыре раза, плотность планеты возросла бы до такой степени, что под действием возросшей гравитации размеры планеты сильно уменьшились. Таким образом, по всей видимости, Юпитер имеет максимальный диаметр, который могла бы иметь планета с аналогичным строением и историей. С дальнейшим увеличением массы сжатие продолжалось бы до тех пор, пока в процессе формирования звезды Юпитер не стал бы коричневым карликом с массой, превосходящей его нынешнюю примерно в 50 раз. Это даёт астрономам основания считать Юпитер «неудавшейся звездой», хотя неясно, схожи ли процессы формирования таких планет, как Юпитер, с теми, что приводят к формированию двойных звёздных систем. Хотя для того, чтобы стать звездой, Юпитеру потребовалось бы быть в 75 раз массивнее, самый маленький из известных красных карликов всего лишь на 30 % больше в диаметре.

Орбита и вращение

При наблюдениях с Земли во время противостояния Юпитер может достигать видимой звёздной величины в -2,94m, это делает его третьим по яркости объектом на ночном небе после Луны и Венеры. При наибольшем удалении видимая величина падает до?1,61m. Расстояние между Юпитером и Землёй меняется в пределах от 588 до 967 млн км.

Противостояния Юпитера происходят с периодом раз в 13 месяцев. В 2010 году противостояние планеты-гиганта пришлось на 21 сентября. Раз в 12 лет происходят великие противостояния Юпитера, когда планета находится около перигелия своей орбиты. В этот период времени его угловой размер для наблюдателя с Земли достигает 50 угловых секунд, а блеск - ярче -2,9m.

Среднее расстояние между Юпитером и Солнцем составляет 778,57 млн км (5,2 а. е.), а период обращения составляет 11,86 года. Поскольку эксцентриситет орбиты Юпитера 0,0488, то разность расстояния до Солнца в перигелии и афелии составляет 76 млн км.

Основной вклад в возмущения движения Юпитера вносит Сатурн. Первого рода возмущение - вековое, действующее на масштабе ~70 тысяч лет, меняя экцентриситет орбиты Юпитера от 0,2 до 0,06, а наклон орбиты от ~1° - 2°. Возмущение второго рода - резонансное с соотношением близким к 2:5 (с точностью до 5 знаков после запятой - 2:4,96666).

Экваториальная плоскость планеты близка к плоскости её орбиты (наклон оси вращения составляет 3,13° против 23,45° для Земли), поэтому на Юпитере не бывает смены времён года.

Юпитер вращается вокруг своей оси быстрее, чем любая другая планета Солнечной системы. Период вращения у экватора - 9 ч. 50 мин. 30 сек., а на средних широтах - 9 ч. 55 мин. 40 сек. Из-за быстрого вращения экваториальный радиус Юпитера (71492 км) больше полярного (66854 км) на 6,49 %; таким образом, сжатие планеты составляет (1:51,4).

Гипотезы о существовании жизни в атмосфере Юпитера

В настоящее время наличие жизни на Юпитере представляется маловероятным: низкая концентрация воды в атмосфере, отсутствие твёрдой поверхности и т. д. Однако ещё в 1970-х годах американский астроном Карл Саган высказывался по поводу возможности существования в верхних слоях атмосферы Юпитера жизни на основе аммиака. Следует отметить, что даже на небольшой глубине в юпитерианской атмосфере температура и плотность достаточно высоки, и возможность, по крайней мере, химической эволюции исключать нельзя, поскольку скорость и вероятность протекания химических реакций благоприятствуют этому. Однако возможно существование на Юпитере и водно-углеводородной жизни: в слое атмосферы, содержащем облака из водяного пара, температура и давление также весьма благоприятны. Карл Саган совместно с Э. Э. Солпитером, проделав вычисления в рамках законов химии и физики, описали три воображаемые формы жизни, могущие существовать в атмосфере Юпитера:

  • Синкеры (англ. sinker - «грузило») - крошечные организмы, размножение которых происходит очень быстро, и которые дают большое количество потомков. Это позволяет выжить части из них при наличии опасных конвекторных потоков, могущих унести синкеров в горячие нижние слои атмосферы;

  • Флоатеры (англ. floater - «поплавок») - гигантские (величиной с земной город) организмы, подобные воздушным шарам. Флоатер откачивает из воздушного мешка гелий и оставляет водород, что позволяет ему держаться в верхних слоях атмосферы. Питаться может органическими молекулами, или вырабатывать их самостоятельно, подобно земным растениям.

  • Хантеры (англ. hunter - «охотник») - хищные организмы, охотники на флоатеров.
  • Химический состав

    Химический состав внутренних слоёв Юпитера невозможно определить современными методами наблюдений, однако обилие элементов во внешних слоях атмосферы известно с относительно высокой точностью, поскольку внешние слои непосредственно исследовались спускаемым аппаратом «Галилео», который был спущен в атмосферу 7 декабря 1995 года. Два основных компонента атмосферы Юпитера - молекулярный водород и гелий. Атмосфера содержит также немало простых соединений, например, воду, метан (CH4), сероводород (H2S), аммиак (NH3) и фосфин (PH3). Их количество в глубокой (ниже 10 бар) тропосфере подразумевает, что атмосфера Юпитера богата углеродом, азотом, серой и, возможно, кислородом по фактору 2-4 относительно Солнца.

    Другие химические соединения, арсин (AsH3) и герман (GeH4), присутствуют, но в незначительных количествах.

    Концентрация инертных газов, аргона, криптона и ксенона, превышает их количество на Солнце (см. таблицу), а концентрация неона явно меньше. Присутствует незначительное количество простых углеводородов: этана, ацетилена и диацетилена, - которые формируются под воздействием солнечной ультрафиолетовой радиации и заряженных частиц, прибывающих из магнитосферы Юпитера. Диоксид углерода, моноксид углерода и вода в верхней части атмосферы, как полагают, своим присутствием обязаны столкновениям с атмосферой Юпитера комет, таких, например, как комета Шумейкеров-Леви 9. Вода не может прибывать из тропосферы, потому что тропопауза, действующая как холодная ловушка, эффективно препятствует поднятию воды до уровня стратосферы.

    Красноватые вариации цвета Юпитера могут объясняться наличием соединений фосфора, серы и углерода в атмосфере. Поскольку цвет может сильно варьироваться, предполагается, что химический состав атмосферы также различен в разных местах. Например, имеются «сухие» и «мокрые» области с разным содержанием водяного пара.

    Структура


    Модель внутренней структуры Юпитера: под облаками - слой смеси водорода и гелия толщиной около 21 тыс. км с плавным переходом от газообразной к жидкой фазе, затем - слой жидкого и металлического водорода глубиной 30-50 тыс. км. Внутри может находиться твёрдое ядро диаметром около 20 тыс. км.

    На данный момент наибольшее признание получила следующая модель внутреннего строения Юпитера:

    1.Атмосфера. Её делят на три слоя:
    a. внешний слой, состоящий из водорода;
    b. средний слой, состоящий из водорода (90 %) и гелия (10 %);
    c. нижний слой, состоящий из водорода, гелия и примесей аммиака, гидросульфата аммония и воды, образующих три слоя облаков:
    a. вверху - облака из оледеневшего аммиака (NH3). Его температура составляет около -145 °C, давление - около 1 атм;
    b. ниже - облака кристаллов гидросульфида аммония (NH4HS);
    c. в самом низу - водяной лёд и, возможно, жидкая водавероятно, имеется в виду - в виде мельчайших капель. Давление в этом слое составляет около 1 атм, температура примерно -130 °C (143 К). Ниже этого уровня планета непрозрачна.
    2. Слой металлического водорода. Температура этого слоя меняется от 6300 до 21 000 К, а давление от 200 до 4000 ГПа.
    3. Каменное ядро.

    Построение этой модели основано на синтезе наблюдательных данных, применении законов термодинамики и экстраполяции лабораторных данных о веществе, находящемся под высоким давлением и при высокой температуре. Основные предположения, положенные в её основу:

  • Юпитер находится в гидродинамическом равновесии

  • Юпитер находится в термодинамическом равновесии.
  • Если к этим положениям добавить законы сохранения массы и энергии, получится система основных уравнений.

    В рамках этой простой трёхслойной модели чёткой границы между основными слоями не существует, однако и области фазовых переходов невелики. Следовательно, можно сделать допущение, что почти все процессы локализованы, и это позволяет каждый слой рассматривать отдельно.

    Атмосфера

    Температура в атмосфере не растёт монотонно. В ней, как и на Земле, можно выделить экзосферу, термосферу, стратосферу, тропопаузу, тропосферу. В самых верхних слоях температура велика; по мере продвижения вглубь давление растёт, а температура падает до тропопаузы; начиная с тропопаузы, и температура, и давление растут по мере продвижения вглубь. В отличие от Земли, на Юпитере нет мезосферы и соответствующей ей мезопаузы.

    В термосфере Юпитера происходит довольно много интересных процессов: именно здесь планета теряет излучением значительную часть своего тепла, именно здесь формируются полярные сияния, именно тут формируется ионосфера. За её верхнюю границу взят уровень давления в 1 нбар. Наблюдаемая температура термосферы 800-1000 К, и на данный момент этот фактический материал до сих пор не получил объяснения в рамках современных моделей, так как в них температура не должна быть выше примерно 400 К. Охлаждение Юпитера тоже нетривиальный процесс: трёхатомный ион водорода(H3+), кроме Юпитера найденный только на Земле, вызывает сильную эмиссию в средней инфракрасной части спектра на длинах волн между 3 и 5 мкм.

    Согласно непосредственным измерениям спускаемого аппарата, верхний уровень непрозрачных облаков характеризовался давлением в 1 атмосферу и температурой -107 °C; на глубине 146 км - 22 атмосферы, +153 °C. Также «Галилео» обнаружил «тёплые пятна» вдоль экватора. По-видимому, в этих местах слой внешних облаков тонок, и можно видеть более тёплые внутренние области.

    Под облаками находится слой глубиной 7-25 тыс. км, в котором водород постепенно изменяет своё состояние от газа к жидкости с увеличением давления и температуры (до 6000 °C). Чёткой границы, отделяющей газообразный водород от жидкого, по-видимому, не существует. Это может выглядеть примерно как непрерывное кипение глобального водородного океана.

    Слой металлического водорода

    Металлический водород возникает при больших давлениях (около миллиона атмосфер) и высоких температурах, когда кинетическая энергия электронов превышает потенциал ионизации водорода. В итоге протоны и электроны в нём существуют раздельно, поэтому металлический водород является хорошим проводником электричества. Предполагаемая толщина слоя металлического водорода - 42-46 тыс. км.

    Мощные электротоки, возникающие в этом слое, порождают гигантское магнитное поле Юпитера. В 2008 году Реймондом Джинлозом из Калифорнийского университета в Беркли и Ларсом Стиксрудом из Лондонского университетского колледжа была создана модель строения Юпитера и Сатурна, согласно которой в их недрах находится также металлический гелий, образующий своеобразный сплав с металлическим водородом.

    Ядро

    С помощью измеренных моментов инерции планеты можно оценить размер и массу её ядра. На данный момент считается, что масса ядра - 10 масс Земли, а размер - 1,5 её диаметра.

    Юпитер выделяет существенно больше энергии, чем получает её от Солнца. Исследователи предполагают, что Юпитер обладает значительным запасом тепловой энергии, образовавшимся в процессе сжатия материи при формировании планеты. Прежние модели внутреннего строения Юпитера, стараясь объяснить избыточную энергию, выделяемую планетой, допускали возможность радиоактивного распада в её недрах или освобождение энергии при сжатии планеты под действием сил тяготения.

    Межслоевые процессы

    Локализовать все процессы внутри независимых слоёв невозможно: необходимо объяснять недостаток химических элементов в атмосфере, избыточное излучение и т. д.

    Различие в содержании гелия во внешних и во внутренних слоях объясняют тем, что гелий конденсируется в атмосфере и в виде капель попадает в более глубокие области. Данное явление напоминает земной дождь, но только не из воды, а из гелия. Недавно было показано, что в этих каплях может растворяться неон. Тем самым объясняется и недостаток неона.

    Движение атмосферы


    Анимация вращения Юпитера, созданная по фотографиям с «Вояджера-1», 1979 г.

    Скорость ветров на Юпитере может превышать 600 км/ч. В отличие от Земли, где циркуляция атмосферы происходит за счёт разницы солнечного нагрева в экваториальных и полярных областях, на Юпитере воздействие солнечной радиации на температурную циркуляцию незначительно; главными движущими силами являются потоки тепла, идущие из центра планеты, и энергия, выделяемая при быстром движении Юпитера вокруг своей оси.

    Ещё по наземным наблюдениям астрономы разделили пояса и зоны в атмосфере Юпитера на экваториальные, тропические, умеренные и полярные. Поднимающиеся из глубин атмосферы нагретые массы газов в зонах под действием значительных на Юпитере кориолисовых сил вытягиваются вдоль меридианов планеты, причём противоположные края зон движутся навстречу друг другу. На границах зон и поясов (области нисходящих потоков) присутствует сильная турбулентность. Севернее экватора потоки в зонах, направленные к северу, отклоняются кориолисовыми силами к востоку, а направленные к югу - к западу. В южном полушарии - соответственно, наоборот. Схожей структурой на Земле обладают пассаты.

    Полосы

    Полосы Юпитера в разные годы

    Характерной особенностью внешнего облика Юпитера являются его полосы. Существует ряд версий, объясняющих их происхождение. Так, по одной из версий, полосы возникали в результате явления конвекции в атмосфере планеты-гиганта - за счёт подогрева, и, как следствие, поднятия одних слоёв, и охлаждения и опускания вниз других. Весной 2010 года учёными была выдвинута гипотеза, согласно которой полосы на Юпитере возникли в результате воздействия его спутников. Предполагается, что под влиянием притяжения спутников на Юпитере сформировались своеобразные «столбы» вещества, которые, вращаясь, и сформировали полосы.

    Конвективные потоки, выносящие внутреннее тепло к поверхности, внешне проявляются в виде светлых зон и тёмных поясов. В области светлых зон отмечается повышенное давление, соответствующее восходящим потокам. Облака, образующие зоны, располагаются на более высоком уровне (примерно на 20 км), а их светлая окраска объясняется, видимо, повышенной концентрацией ярко-белых кристаллов аммиака. Располагающиеся ниже тёмные облака поясов состоят, предположительно, из красно-коричневых кристаллов гидросульфида аммония и имеют более высокую температуру. Эти структуры представляют области нисходящих потоков. Зоны и пояса имеют разную скорость движения в направлении вращения Юпитера. Период обращения колеблется на несколько минут в зависимости от широты. Это приводит к существованию устойчивых зональных течений или ветров, постоянно дующих параллельно экватору в одном направлении. Скорости в этой глобальной системе достигают от 50 до 150 м/с и выше. На границах поясов и зон наблюдается сильная турбулентность, которая приводит к образованию многочисленных вихревых структур. Наиболее известным таким образованием является Большое красное пятно, наблюдающееся на поверхности Юпитера в течение последних 300 лет.

    Возникнув, вихрь поднимает на поверхность облаков нагретые массы газа с парами малых компонентов. Образующиеся кристаллы аммиачного снега, растворов и соединений аммиака в виде снега и капель, обычного водяного снега и льда постепенно опускаются в атмосфере, пока не достигают уровней, на которых температура достаточна высока, и испаряются. После чего вещество в газообразном состоянии снова возвращается в облачный слой.

    Летом 2007 года телескоп «Хаббл» зафиксировал резкие изменения в атмосфере Юпитера. Отдельные зоны в атмосфере к северу и югу от экватора превратились в пояса, а пояса - в зоны. При этом изменились не только формы атмосферных образований, но и их цвет.

    9 мая 2010 года астроном-любитель Энтони Уэсли (англ. Anthony Wesley, также см. ниже) обнаружил, что с лика планеты внезапно исчезло одно из самых заметных и самых стабильных во времени образований - Южный экваториальный пояс. Именно на широте Южного экваториального пояса расположено «омываемое» им Большое красное пятно. Причиной внезапного исчезновения Южного экваториального пояса Юпитера считается появление над ним слоя более светлых облаков, под которыми и скрывается полоса тёмных облаков. По данным исследований, проведённых телескопом «Хаббл», был сделан вывод о том, что пояс не исчез полностью, а просто оказался скрыт под слоем облаков, состоящих из аммиака.

    Большое красное пятно

    Большое красное пятно - овальное образование изменяющихся размеров, расположенное в южной тропической зоне. Было открыто Робертом Гуком в 1664 году. В настоящее время оно имеет размеры 15?30 тыс. км (диаметр Земли ~12,7 тыс. км), а 100 лет назад наблюдатели отмечали в 2 раза большие размеры. Иногда оно бывает не очень чётко видимым. Большое красное пятно - это уникальный долгоживущий гигантский ураган, вещество в котором вращается против часовой стрелки и совершает полный оборот за 6 земных суток.

    Благодаря исследованиям, проведённым в конце 2000 года зондом «Кассини», было выяснено, что Большое красное пятно связано с нисходящими потоками (вертикальная циркуляция атмосферных масс); облака здесь выше, а температура ниже, чем в остальных областях. Цвет облаков зависит от высоты: синие структуры - самые верхние, под ними лежат коричневые, затем белые. Красные структуры - самые низкие. Скорость вращения Большого красного пятна составляет 360 км/ч. Его средняя температура составляет -163 °C, причём между окраинными и центральными частями пятна наблюдается различие в температуре порядка 3-4 градусов. Это различие, как предполагается, ответственно за тот факт, что атмосферные газы в центре пятна вращаются по часовой стрелке, в то время как на окраинах - против. Также выдвинуто предположение о взаимосвязи температуры, давления, движения и цвета Красного пятна, хотя как именно она осуществляется, учёные пока затрудняются сказать.

    Время от времени на Юпитере наблюдаются столкновения больших циклонических систем. Одно из них произошло в 1975 году, в результате чего красный цвет Пятна поблёк на несколько лет. В конце февраля 2002 года ещё один гигантский вихрь - Белый овал - начал тормозиться Большим красным пятном, и столкновение продолжалось целый месяц. Однако оно не нанесло серьёзного ущерба обоим вихрям, так как произошло по касательной.

    Красный цвет Большого красного пятна представляет собой загадку. Одной из возможных причин могут быть химические соединения, содержащие фосфор. Фактически цвета и механизмы, создающие вид всей юпитерианской атмосферы, до сих пор ещё плохо поняты и могут быть объяснены только при прямых измерениях её параметров.

    В 1938 году было зафиксировано формирование и развитие трёх больших белых овалов вблизи 30° южной широты. Этот процесс сопровождался одновременным формированием ещё нескольких маленьких белых овалов - вихрей. Это подтверждает, что Большое красное пятно представляет собой самый мощный из юпитерианских вихрей. Исторические записи не обнаруживают подобных долго существующих систем в средних северных широтах планеты. Наблюдались большие тёмные овалы вблизи 15° северной широты, но, видимо, необходимые условия для возникновения вихрей и последующего их превращения в устойчивые системы, подобные Красному пятну, существуют только в Южном полушарии.

    Малое красное пятно

    Большое красное пятно и «Малое красное пятно» в мае 2008 на фотографии, сделанной телескопом «Хаббл»

    Что же касается трёх вышеупомянутых белых вихрей-овалов, то два из них объединились в 1998 году, а в 2000 году возникший новый вихрь слился с оставшимся третьим овалом. В конце 2005 года вихрь (Овал ВА, англ. Oval BC) начал менять свой цвет, приобретя в конце концов красную окраску, за что получил новое название - Малое красное пятно. В июле 2006 года Малое красное пятно соприкоснулось со своим старшим «собратом» - Большим красным пятном. Тем не менее, это не оказало какого-либо существенного влияния на оба вихря - столкновение произошло по касательной. Столкновение было предсказано ещё в первой половине 2006 года.

    Молнии

    В центре вихря давление оказывается более высоким, чем в окружающем районе, а сами ураганы окружены возмущениями с низким давлением. По снимкам, сделанными космическими зондами «Вояджер-1» и «Вояджер-2», было установлено, что в центре таких вихрей наблюдаются колоссальных размеров вспышки молний протяжённостью в тысячи километров. Мощность молний на три порядка превышает земные.

    Магнитное поле и магнитосфера

    Схема магнитного поля Юпитера

    Первый признак любого магнитного поля - радиоизлучение, а также рентген. Строя модели происходящих процессов, можно судить о строении магнитного поля. Так было установлено, что магнитное поле Юпитера имеет не только дипольную составляющую, но и квадруполь, октуполь и другие гармоники более высоких порядков. Предполагается, что магнитное поле создаёт динамо-машина, похожая на земную. Но в отличие от Земли, проводником токов на Юпитере служит слой металлического гелия.

    Ось магнитного поля наклонена к оси вращения 10,2 ± 0,6°, почти как и на Земле, однако, северный магнитный полюс расположен рядом с южным географическим, а южный магнитный - с северным географическим. Напряжённость поля на уровне видимой поверхности облаков равна 14 Э у северного полюса и 10,7 Э у южного. Его полярность обратна полярности земного магнитного поля.

    Форма магнитного поля у Юпитера сильно сплюснута и напоминает диск (в отличие от каплевидной у Земли). Центробежная сила, действующая на со-вращающуюся плазму с одной стороны и тепловое давление горячей плазмы с другой растягивают силовые линии, образуя на расстоянии 20 RJ структуру, напоминающую тонкий блин, также известную как магнитодиск. Он имеет тонкую токовую структуру вблизи магнитного экватора.

    Вокруг Юпитера, как и вокруг большинства планет Солнечной системы, существует магнитосфера - область, в которой поведение заряженных частиц, плазмы, определяется магнитным полем. Для Юпитера источниками таких частиц является солнечный ветер и Ио. Вулканический пепел, выбрасываемый вулканами Ио, под действием солнечного ультрафиолета ионизуется. Так образуются ионы серы и кислорода: S+, O+, S2+ и O2+. Эти частицы покидают атмосферу спутника, однако остаются на орбите вокруг него, образуя тор. Этот тор был открыт аппаратом «Вояджер-1»; он лежит в плоскости экватора Юпитера и имеет радиус в 1 RJ в поперечном сечении и радиус от центра (в данном случае от центра Юпитера) до образующей поверхности в 5,9 RJ. Именно он принципиально меняет динамику магнитосферы Юпитера.

    Магнитосфера Юпитера. Захваченные магнитным полем ионы солнечного ветра на схеме показаны красным цветом, пояс нейтрального вулканического газа Ио - зелёным и пояс нейтрального газа Европы - синим. ENA - нейтральные атомы. По данным зонда «Кассини», полученным в начале 2001 г.

    Набегающий солнечный ветер уравновешивается давлением магнитного поля на расстояния в 50-100 радиусов планеты, без влияния Ио это расстояние было бы не более 42 RJ. На ночной стороне протягивается за орбиту Сатурна, достигая в длину 650 млн км и более. Ускоренные в магнитосфере Юпитера электроны достигают Земли. Если бы магнитосферу Юпитера можно было видеть с поверхности Земли, то её угловые размеры превышали бы размеры Луны.

    Радиационные пояса

    Юпитер обладает мощными радиационными поясами. При сближении с Юпитером «Галилео» получил дозу радиации, в 25 раз превышающую смертельную дозу для человека. Излучение радиационного пояса Юпитера в радиодиапазоне впервые было обнаружено в 1955 году. Радиоизлучение носит синхротронный характер. Электроны в радиационных поясах обладают огромной энергией, составляющей около 20 МэВ, при этом зондом «Кассини» было обнаружено, что плотность электронов в радиационных поясах Юпитера ниже, чем ожидалось. Поток электронов в радиационных поясах Юпитера может представлять серьёзную опасность для космических аппаратов ввиду большого риска повреждения аппаратуры радиацией. Вообще, радиоизлучение Юпитера не является строго однородным и постоянным - как по времени, так и по частоте. Средняя частота такого излучения, по данным исследований, составляет порядка 20 МГц, а весь диапазон частот - от 5-10 до 39,5 МГц.

    Юпитер окружён ионосферой протяжённостью 3000 км.

    Полярные сияния на Юпитере


    Структура полярных сияний на Юпитере: показано основное кольцо, полярное излучение и пятна, возникшие как результат взаимодействия с естественными спутниками Юпитера.

    Юпитер демонстрирует яркие устойчивые сияния вокруг обоих полюсов. В отличие от таких же на Земле, которые появляются в периоды повышенной солнечной активности, полярные сияния Юпитера являются постоянными, хотя их интенсивность меняется изо дня в день. Они состоят из трёх главных компонентов: основная и наиболее яркая область сравнительно небольшая (менее 1000 км в ширину), расположена примерно в 16 ° от магнитных полюсов; горячие пятна - следы магнитных силовых линий, соединяющих ионосферы спутников с ионосферой Юпитера, и области кратковременных выбросов, расположенных внутри основного кольца. Выбросы полярных сияний были обнаружены почти во всех частях электромагнитного спектра от радиоволн до рентгеновских лучей (до 3 кэВ), однако они наиболее ярки в среднем инфракрасном диапазоне (длина волны 3-4 мкм и 7-14 мкм) и глубокой ультрафиолетовой области спектра (длина волны 80-180 нм).

    Положение основных авроральных колец устойчиво, как и их форма. Однако их излучение сильно модулируется давлением солнечного ветра - чем сильнее ветер, тем слабее полярные сияния. Стабильность сияний поддерживается большим притоком электронов, ускоряемых за счёт разности потенциалов между ионосферой и магнитодиском. Эти электроны порождает ток, который поддерживает синхронность вращения в магнитодиске. Энергия этих электронов 10 - 100 кэВ; проникая глубоко внутрь атмосферы, они ионизируют и возбуждают молекулярный водород, вызывая ультрафиолетовое излучение. Кроме того, они разогревают ионосферу, чем объясняется сильное инфракрасное излучение полярных сияний и частично нагрев термосферы.

    Горячие пятна связаны с тремя Галилеевыми спутниками: Ио, Европа и Ганимед. Они возникают из-за того, что вращающаяся плазма замедляется вблизи спутников. Самые яркие пятна принадлежат Ио, поскольку этот спутник является основным поставщиком плазмы, пятна Европы и Ганимеда гораздо слабее. Яркие пятна внутри основных колец, появляющиеся время от времени, как считается, связаны с взаимодействием магнитосферы и солнечного ветра.

    Большое рентгеновское пятно


    Комбинированное фото Юпитера с телескопа «Хаббл» и с рентгеновского телескопа «Чандра» - февраль 2007 г.

    Орбитальным телескопом «Чандра» в декабре 2000 года на полюсах Юпитера (главным образом, на северном полюсе) обнаружен источник пульсирующего рентгеновского излучения, названный Большим рентгеновским пятном. Причины этого излучения пока представляют загадку.

    Модели формирования и эволюции

    Значительный вклад в наши представления о формировании и эволюции звёзд вносят наблюдения экзопланет. Так, с их помощью были установлены черты, общие для всех планет, подобных Юпитеру:

    Они образуются ещё до момента рассеяния протопланетного диска.
    Значительную роль в формировании играет аккреция.
    Обогащение тяжёлыми химическими элементами за счёт планетезималей.

    Существуют две основные гипотезы, объясняющие процессы возникновения и формирования Юпитера.

    Согласно первой гипотезе, получившей название гипотезы «контракции», относительное сходство химического состава Юпитера и Солнца (большая доля водорода и гелия) объясняется тем, что в процессе формирования планет на ранних стадиях развития Солнечной системы в газопылевом диске образовались массивные «сгущения», давшие начало планетам, т. е. Солнце и планеты формировались схожим образом. Правда, эта гипотеза не объясняет всё-таки имеющиеся различия в химическом составе планет: Сатурн, например, содержит больше тяжёлых химических элементов, чем Юпитер, а тот, в свою очередь, больше, чем Солнце. Планеты же земной группы вообще разительно отличаются по своему химическому составу от планет-гигантов.

    Вторая гипотеза (гипотеза «аккреции») гласит, что процесс образования Юпитера, а также Сатурна, происходил в два этапа. Сначала в течение нескольких десятков миллионов лет шёл процесс формирования твёрдых плотных тел, наподобие планет земной группы. Затем начался второй этап, когда на протяжении нескольких сотен тысяч лет длился процесс аккреции газа из первичного протопланетного облака на эти тела, достигшие к тому моменту массы в несколько масс Земли.

    Ещё на первом этапе из области Юпитера и Сатурна диссипировала часть газа, что повлекло за собой некоторые различия в химическом составе этих планет и Солнца. На втором этапе температура наружных слоёв Юпитера и Сатурна достигала 5000 °C и 2000 °C соответственно. Уран и Нептун же достигли критической массы, необходимой для начала аккреции, гораздо позже, что повлияло как на их массы, так и на химический состав.

    В 2004 году Катариной Лоддерс из Университета Вашингтона была выдвинута гипотеза о том, что ядро Юпитера состоит в основном из некоего органического вещества, обладающего клеящими способностями, что, в свою очередь, в немалой степени повлияло на захват ядром вещества из окружающей области пространства. Образовавшееся в результате каменное-смоляное ядро силой своего притяжения «захватило» газ из солнечной туманности, сформировав современный Юпитер. Эта идея вписывается во вторую гипотезу о возникновении Юпитера путём аккреции.

    Спутники и кольца


    Крупные спутники Юпитера: Ио, Европа, Ганимед и Каллисто и их поверхности.


    Спутники Юпитера: Ио, Европа, Ганимед и Каллисто


    По данным на январь 2012 года, у Юпитера известно 67 спутников - максимальное значение для Солнечной системы. По оценкам, спутников может быть не менее сотни. Спутникам даны в основном имена различных мифических персонажей, так или иначе связанных с Зевсом-Юпитером. Спутники разделяют на две большие группы - внутренние (8 спутников, галилеевы и негалилеевы внутренние спутники) и внешние (55 спутников, также подразделяются на две группы) - таким образом, всего получается 4 «разновидности». Четыре самых крупных спутника - Ио, Европа, Ганимед и Каллисто - были открыты ещё в 1610 году Галилео Галилеем]. Открытие спутников Юпитера послужило первым серьёзным фактическим доводом в пользу гелиоцентрической системы Коперника.

    Европа

    Наибольший интерес представляет Европа, обладающая глобальным океаном, в котором не исключено наличие жизни. Специальные исследования показали, что океан простирается вглубь на 90 км, его объём превосходит объём земного Мирового океана. Поверхность Европы испещрена разломами и трещинами, возникшими в ледяном панцире спутника. Высказывалось предположение, что источником тепла для Европы служит именно сам океан, а не ядро спутника. Существование подлёдного океана предполагается также на Каллисто и Ганимеде. Основываясь на предположении о том, что за 1-2 млрд лет кислород мог проникнуть в подлёдный океан, учёные теоретически предполагают наличие жизни на спутнике. Содержание кислорода в океане Европы достаточно для поддержания существования не только одноклеточных форм жизни, но и более крупных. Этот спутник занимает второе место по возможности возникновения жизни после Энцелада.

    Ио

    Ио интересен наличием мощных действующих вулканов; поверхность спутника залита продуктами вулканической активности. На фотографиях, сделанных космическими зондами, видно, что поверхность Ио имеет ярко-жёлтую окраску с пятнами коричневого, красного и тёмно-жёлтого цветов. Эти пятна - продукт извержений вулканов Ио, состоящих преимущественно из серы и её соединений; цвет извержений зависит от их температуры.
    [править] Ганимед

    Ганимед является самым большим спутником не только Юпитера, но и вообще в Солнечной системе среди всех спутников планет. Ганимед и Каллисто покрыты многочисленными кратерами, на Каллисто многие из них окружены трещинами.

    Каллисто

    На Каллисто, как предполагается, также есть океан под поверхностью спутника; на это косвенно указывает магнитное поле Каллисто, которое может быть порождено наличием электрических токов в солёной воде внутри спутника. Также в пользу этой гипотезы свидетельствует тот факт, что магнитное поле у Каллисто меняется в зависимости от его ориентации на магнитное поле Юпитера, то есть существует высокопроводящая жидкость под поверхностью данного спутника.

    Сравнение размеров Галилеевых спутников с Землёй и Луной

    Особенности галилеевых спутников

    Все крупные спутники Юпитера вращаются синхронно и всегда обращены к Юпитеру одной и той же стороной вследствие влияния мощных приливных сил планеты-гиганта. При этом Ганимед, Европа и Ио находятся друг с другом в орбитальном резонансе. К тому же среди спутников Юпитера существует закономерность: чем дальше спутник от планеты, тем меньше его плотность (у Ио - 3,53 г/см2, Европы - 2,99 г/см2, Ганимеда - 1,94 г/см2, Каллисто - 1,83 г/см2). Это зависит от количества воды на спутнике: на Ио её практически нет, на Европе - 8 %, на Ганимеде и Каллисто - до половины их массы.

    Малые спутники Юпитера

    Остальные спутники намного меньше и представляют собой скалистые тела неправильной формы. Среди них есть обращающиеся в обратную сторону. Из числа малых спутников Юпитера немалый интерес для учёных представляет Амальтея: как предполагается, внутри неё существует система пустот, возникших в результате имевшей место в далёком прошлом катастрофы - из-за метеоритной бомбардировки Амальтея распалась на части, которые затем вновь соединились под действием взаимной гравитации, но так и не стали единым монолитным телом.

    Метида и Адрастея - ближайшие спутники к Юпитеру с диаметрами примерно 40 и 20 км соответственно. Они движутся по краю главного кольца Юпитера по орбите радиусом 128 тысяч км, делая оборот вокруг Юпитера за 7 часов и являясь при этом самыми быстрыми спутниками Юпитера.

    Общий диаметр всей системы спутников Юпитера составляет 24 млн км. Более того, предполагается, что в прошлом спутников у Юпитера было ещё больше, но некоторые из них упали на планету под воздействием её мощной гравитации.

    Спутники с обратным вращением вокруг Юпитера

    Спутники Юпитера, чьи названия заканчиваются на «е» - Карме, Синопе, Ананке, Пасифе и другие (см. группа Ананке, группа Карме, группа Пасифе) - обращаются вокруг планеты в обратном направлении (ретроградное движение) и, по предположениям учёных, образовались не вместе с Юпитером, а были захвачены им позже. Аналогичным свойством обладает спутник Нептуна Тритон.

    Временные луны Юпитера

    Некоторые кометы представляют собой временные луны Юпитера. Так, в частности, комета Кусиды - Мурамацу (англ.)русск. в период с 1949 по 1961 гг. была спутником Юпитера, совершив за это время вокруг планеты два оборота. Кроме данного объекта известно ещё, как минимум, о 4 временных лунах планеты-гиганта.

    Кольца Юпитера


    Кольца Юпитера (схема).

    У Юпитера имеются слабые кольца, обнаруженные во время прохождения «Вояджера-1» мимо Юпитера в 1979 году. Наличие колец предполагал ещё в 1960 году советский астроном Сергей Всехсвятский на основе исследования дальних точек орбит некоторых комет Всехсвятский заключил, что эти кометы могут происходить из кольца Юпитера и предположил, что образовалось кольцо в результате вулканической деятельности спутников Юпитера (вулканы на Ио открыты два десятилетия спустя).

    Кольца оптически тонки, оптическая толщина их ~10-6, а альбедо частиц всего 1,5 %. Однако наблюдать их всё же возможно: при фазовых углах, близких к 180 градусам (взгляд «против света»), яркость колец возрастает примерно в 100 раз, а тёмная ночная сторона Юпитера не оставляет засветки. Всего колец три: одно главное, «паутинное» и гало.
    Фотография колец Юпитера, сделанная «Галилео» в прямом рассеянном свете.

    Главное кольцо простирается от 122 500 до 129 230 км от центра Юпитера. Внутри главное кольцо переходит в тороидальное гало, а снаружи контактирует с паутинным. Наблюдаемое прямое рассеяние излучения в оптическом диапазоне характерно для пылевых частиц микронного размера. Однако пыль в окрестности Юпитера подвергается мощным негравитационным возмущениям, из-за этого время жизни пылинок 103±1 лет. Это означает, что должен быть источник этих пылинок. На роль подобных источников подходят два малых спутника, лежащих внутри главного кольца - Метида и Адрастея. Сталкиваясь с метеороидами, они порождают рой микрочастиц, которые впоследствии распространяются по орбите вокруг Юпитера. Наблюдения паутинного кольца выявили два отдельных пояса вещества, берущих начало на орбитах Фивы и Амальтеи. Структура этих поясов напоминает строение зодиакальных пылевых комплексов.

    Троянские астероиды

    Троянские астероиды - группа астероидов, расположенных в районе точек Лагранжа L4 и L5 Юпитера. Астероиды находятся с Юпитером в резонансе 1:1 и движутся вместе с ним по орбите вокруг Солнца. При этом существует традиция называть объекты, расположенные около точки L4, именами греческих героев, а около L5 - троянских. Всего на июнь 2010 года открыто 1583 таких объекта.

    Существует две теории, объясняющих происхождение троянцев. Первая утверждает, что они возникли на конечном этапе формирования Юпитера (рассматривается аккрецирующий вариант). Вместе с веществом были захвачены планетозимали, на которые тоже шла аккреция, а так как механизм был эффективным, то половина из них оказались в гравитационной ловушке. Недостатки этой теории: число объектов, возникших таким образом, на четыре порядка больше наблюдаемого, и они имеют гораздо больший наклон орбиты.

    Вторая теория - динамическая. Через 300-500 млн лет после формирования солнечной системы Юпитер и Сатурн проходили через резонанс 1:2. Это привело к перестройке орбит: Нептун, Плутон и Сатурн увеличили радиус орбиты, а Юпитер уменьшил. Это повлияло на гравитационную устойчивость пояса Койпера, и часть астероидов, его населявших, переселились на орбиту Юпитера. Одновременно с этим были разрушены все изначальные троянцы, если таковые были.

    Дальнейшая судьба троянцев неизвестна. Ряд слабых резонансов Юпитера и Сатурна заставит их хаотично двигаться, но какова будет эта сила хаотичного движения и будут ли они выброшены со своей нынешней орбиты, трудно сказать. Кроме этого, столкновения между собой медленно, но верно уменьшают количество троянцев. Какие-то фрагменты могут стать спутниками, а какие-то кометами.

    Столкновения небесных тел с Юпитером
    Комета Шумейкеров - Леви


    След от одного из обломков кометы Шумейкеров-Леви, снимок с телескопа «Хаббл», июль 1994 г.
    Основная статья: Комета Шумейкеров - Леви 9

    В июле 1992 года к Юпитеру приблизилась комета. Она прошла на расстоянии около 15 тысяч километров от верхней границы облаков, и мощное гравитационное воздействие планеты-гиганта разорвало её ядро на 17 больших частей. Этот кометный рой был обнаружен на обсерватории Маунт-Паломар супругами Кэролин и Юджином Шумейкерами и астрономом-любителем Дэвидом Леви. В 1994 году, при следующем сближении с Юпитером, все обломки кометы врезались в атмосферу планеты с огромной скоростью - около 64 километров в секунду. Этот грандиозный космический катаклизм наблюдался как с Земли, так и с помощью космических средств, в частности, с помощью космического телескопа «Хаббл», спутника IUE и межпланетной космической станции «Галилео». Падение ядер сопровождалось вспышками излучения в широком спектральном диапазоне, генерацией газовых выбросов и формированием долгоживущих вихрей, изменением радиационных поясов Юпитера и появлением полярных сияний, ослаблением яркости плазменного тора Ио в крайнем ультрафиолетовом диапазоне.

    Другие падения

    19 июля 2009 года уже упомянутый выше астроном-любитель Энтони Уэсли (англ. Anthony Wesley) обнаружил тёмное пятно в районе Южного полюса Юпитера. В дальнейшем эту находку подтвердили в обсерватории Кек на Гавайях. Анализ полученных данных указал, что наиболее вероятным телом упавшим в атмосферу Юпитера был каменный астероид.

    3 июня 2010 года в 20:31 по международному времени два независимых наблюдателя - Энтони Уэсли (англ. Anthony Wesley, Австралия) и Кристофер Го (англ. Christopher Go, Филиппины) - засняли вспышку над атмосферой Юпитера, что, скорее всего, является падением нового, ранее неизвестного тела на Юпитер. Через сутки после данного события новые тёмные пятна в атмосфере Юпитера не обнаружены. Уже проведены наблюдения на крупнейших инструментах Гавайских островов (Gemini, Keck и IRTF) и запланированы наблюдения на космическом телескопе «Хаббл». 16 июня 2010 года НАСА опубликовало пресс-релиз, в котором сообщается, что на снимках, полученных на космическом телескопе «Хаббл» 7 июня 2010 года (через 4 суток после фиксирования вспышки), не обнаружены признаки падения в верхних слоях атмосферы Юпитера.

    20 августа 2010 года в 18:21:56 по международному времени произошла вспышка над облачным покровом Юпитера, которую обнаружил японский астроном-любитель Масаюки Татикава из префектуры Кумамото на сделанной им видеозаписи. На следующий день после объявления о данном событии нашлось подтверждение от независимого наблюдателя Аоки Казуо (Aoki Kazuo) - любителя астрономии из Токио. Предположительно, это могло быть падение астероида или кометы в атмосферу планеты-гиганта

    Юпитер является пятой по счету планетой Солнечной системы и относится к группе газовых гигантов. Название свое он получил от римского бога Юпитера, аналогом которого в греческой мифологии является Зевс. В статье приводится информация о параметрах Солнечной системы, о периоде обращения Юпитера вокруг Солнца и о других характеристиках этого гиганта.

    Прежде чем рассматривать вопрос о том, сколько составляет звездный период обращения Юпитера вокруг Солнца, охарактеризуем систему, в которой находится этот газовый гигант.

    Солнечная система представляет собой совокупность главной звезды и 8 планет, которые вращаются вокруг этой звезды. Эта система находится в одном из рукавов галактики Млечный Путь на расстоянии 33 000 световых лет от ее центра. Помимо планет, в состав Солнечной системы также входят малые планеты-карлики, астероиды, кометы, метеориты и другие небольшие космические тела.

    Согласно одной из распространенных гипотез, рассматриваемая космическая система образовалась из гигантского облака газа и пыли приблизительно 4,7 млрд лет назад благодаря процессам фрагментации и коллапса.

    Планеты Солнечной системы

    До 24 августа 2006 года считалось, что в Солнечной системе существует 9 планет, однако после введения Международным астрономическим союзом специального класса "планеты карлики", Плутон перешел в их число и количество планет сократилось до 8.

    Планеты представляют собой космические тела округлой формы, которые вращаются вокруг звезды Солнце по эллиптическим орбитам и вокруг собственной оси. Расстояние от планеты до звезды называется радиусом ее орбиты, а поскольку орбита имеет эллиптическую форму, то таких радиуса два: большой и малый. Как правило, расстояние до каждой следующей планеты от Солнца в 2 раза больше, чем до предыдущей. Все планеты Солнечной системы, за исключением Меркурия и Венеры, обладают спутниками, то есть космическими телами, вращающимися вокруг них. Самым известным из таких спутников является Луна.

    Самые близкие к Солнцу планеты называются внутренними, их 4 (Меркурий, Венера, Земля и Марс). Все эти планеты характеризуются небольшими размерами, высокой плотностью образующей их материи (твердое тело), небольшой скоростью вращения вокруг собственной оси, а также наличием незначительного количества естественных спутников. Планеты, расположенные на периферии Солнечной системы, называются гигантами. Это Юпитер, Сатурн, Уран и Нептун. Для них характерна низкая плотность вещества (газ), быстрое вращение вокруг оси и большое количество спутников. Кроме того, период обращения вокруг Солнца планет Юпитер, Сатурн и других гигантов значительно больше периода внутренних планет.

    Юпитер является самой большой планетой рассматриваемой системы, а Меркурий - самой маленькой. Венера по размеру и массе близка Земле, а Марс имеет в 2 раза меньшую массу, чем Земля.

    Помимо описанных планет и их спутников, в Солнечной системе много астероидов и комет. Большое количество астероидов вращается между орбитами Марса и Юпитера (астероидный пояс).

    Что представляет собой планета Юпитер?

    Юпитер - это самая яркая планета нашего небосвода. Кроме того, по размерам он занимает второе место после самого Солнца. Если сложить все массы планет Солнечной системы, то масса Юпитера будет почти в 2 раза больше. Масса этого гиганта в 318 раз больше земной, а его объем в 1317 раз больше размеров нашей планеты. Некоторые ученые полагают, что Юпитеру больше лет, чем самому Солнцу.

    Юпитер состоит в основном из гелия и водорода, которые находятся в газообразном состоянии. Среди его главных особенностей атмосферы можно назвать большое красное пятно (огромный антициклон, расположенный в тропической зоне планеты), структуру его облаков, которые имеют вид темных и светлых лент, а также высокую динамику его атмосферы, в которой дуют ветра со скоростью до 500 км/ч.

    Юпитер обращается вокруг своей оси быстрее, чем за 10 часов, что является рекордным значением для Солнечной системы. Прежде чем говорить о периоде обращения Юпитера вокруг Солнца в земных сутках, следует отметить, что средний радиус его орбиты составляет 778 млн км, что приблизительно равно 5 расстояниям от нашей звезды до нашей планеты.

    Теории образования Юпитера

    Существует две теории образования этой планеты-гиганта:

    1. Планета сформировалась из ледяной как 10 планет Земля, которая постепенно собрала газ вокруг себя из околокосмического пространства.
    2. Планета образовалась благодаря гравитационному коллапсу, который подобен таковому при образовании звезд.

    Обе теории имеют право на существование, однако невозможно объяснить некоторые факты о Юпитере. Например, почему планета имеет такие большие размеры, так же неясно, как невозможно объяснить насыщенность атмосферы этого гиганта благородными газами. Изучение внутренней структуры планеты должно внести ясность в эти и другие вопросы.

    Период обращения Юпитера вокруг Солнца

    Как уже выше было сказано, Юпитер находится на расстоянии 5,2 астрономические единицы (АЕ) от Солнца, то есть в 5,2 раза дальше, чем Земля. Согласно измеренным данным, период обращения Юпитера вокруг Солнца - 12 лет, за это время Земля успевает сделать почти 12 оборотов вокруг Солнца. Более точное значение периода Юпитера - 11,86 земного года.

    Выше было отмечено, что форма орбиты любой планеты Солнечной системы является эллипсом, однако у Юпитера она является практически круглой. Доказать это можно простым способом. Средний радиус орбиты этого гиганта составляет R = 778412026 км. Если найти длину окружности орбиты планеты (2*pi*R, где pi = 3,14) и поделить ее на среднюю скорость движения гиганта по своей орбите v = 13,0697 км/с, то можно получить значение периода обращения Юпитера равное 11,86 года, что точно совпадает с измеренным экспериментально значением.

    Справедливости ради отметим, что во время своего орбитального вращения Юпитер приближается к звезде на минимальное расстояние 4,95 АЕ, а удаляется на максимальное расстояние 5,46 АЕ, это означает, что форма его орбиты отличается от идеальной окружности приблизительно на 4,8 %.

    Если выразить период обращения Юпитера вокруг Солнца в земных сутках, тогда это число составит 11 лет 315 суток и 1,1 час или 4334 суток с учетом високосных лет.

    Особенность вращения планеты-гиганта по своей орбите

    Раскрывая вопрос о том, какой период обращения Юпитера вокруг Солнца в сутках, следует рассказать об одном любопытном факте. Мы привыкли думать, что Юпитер, подобно остальным планетам, вращается вокруг нашей звезды, однако это не совсем так. Всему виной масса газового гиганта, которая всего в 1000 раз меньше массы Солнца. Для сравнения отметим, что масса нашей голубой планеты в 330 тысяч раз меньше массы Солнца, а - второй по размерам планеты Солнечной системы - в 3500 раз меньше солнечной.

    В то же время из физики известно, что два тела, которые вращаются друг вокруг друга, в действительности вращаются вокруг общего центра тяжести или барицентра. Если одно из этих двух тел имеет намного большую массу, чем второе тело, то барицентр практически совпадает с центром массы первого массивного тела. Последняя ситуация наблюдается, если рассматривать вращение любой планеты вокруг Солнца.

    Если же речь идет о вращении Юпитера, то в реальности, благодаря влиянию сильной гравитации этого гиганта, наша звезда также вращается по некоторой небольшой орбите, радиус которой равен 1,068 радиуса Солнца. Описанное явление приведено ниже на рисунке, где словом Jupiter обозначен Юпитер.

    Где можно увидеть Юпитер на небосводе?

    Поскольку Юпитер находится дальше от Солнца, чем наша планета, и период обращения Юпитера вокруг Солнца значительно больше, чем это значение для Земли, гиганта можно увидеть в любой точке эклиптики, причем могут существовать и его затмения Солнцем. Отметим, что планеты Венера и Меркурий находятся ближе к нашей звезде, чем Земля, поэтому их увидеть можно только в направлении Солнца.

    Юпитер является второй по счету самой яркой планетой (первая Венера), которую можно увидеть на небосводе невооруженным взглядом. Планета имеет бело-желтый цвет. С помощью телескопа видны атмосфера и спутники этого гиганта.

    С астрономическими параметрами и движением тел в Солнечной системе тесно связана наука астрология, которая основывается на существовании корреляции между небесными и земными событиями. В настоящее время выделяют два основных вида астрологии: западная (популярна в Европе и Америке) и восточная (Китай, Индия).

    В западной астрологии существует 12 созвездий, образующих зодиакальный круг, который Солнце, если смотреть с Земли, проходит в течение 1-го земного года. Линия, по которой наша звезда совершает свое годовое движение, называется эклиптикой. Все созвездия зодиака, при их рассмотрении с Земли, образуют полосу шириной 30 o , посередине этой полосы проходит линия эклиптики.

    В астрологии считается, что когда Солнце расположено вблизи определенного созвездия зодиака, то люди, родившиеся в это время, будут обладать определенными качествами. Но эти качества определяются не только временем года, когда родился человек, но и положением планет в Солнечной системе.

    Юпитер в астрологии

    В астрологии эта планета представляет собой коммуникабельность человека. Она связана с путешествиями, философией и религиозными верованиями. В соответствии с периодом обращения Юпитера вокруг Солнца, планете нужен почти 1 земной год, чтобы пройти весь зодиакальный круг. Юпитер считается планетой-покровителем для знаков зодиака Стрелец и Рыбы.